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Propagation of the excitation that changes a left-handed helix to a right-handed helix is studied as a model 
for the mechanism of certain phase transitions in polytetrafluoroethylene. Although energy considerations 
cause these dynamic helicity-reversal defects to decelerate after creation, the particular morphology of this 
polymer appears to permit them to traverse a lamellar thickness in times of the order of 10 ns. 
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INTRODUCTION 

Polytetrafluoroethylene (PTFE) is a commercially im- 
portant simple polymer with the rich phase diagram 
shown in Figure 1. In the high-pressure phase III, the 
conformation of the helix is that of a planar zigzag, or 
21 helix 1. In the low-pressure phases I, II and IV, the 
polymer molecules are helical with a gentle twist away 
from the zigzag conformation. This twist is caused by 
the repulsion between the fluorine atoms on alternate 
carbon atoms 2. In phase II, the helix is incommensurate 
with a pitch of 2.910 rad per monomer, corresponding 
to approximately 2.159 CF2 units per turn of the helix. 
The unit cell of this phase is triclinic and has been 
reported to contain two helical chains with opposite 
handedness 3'4. In phases I and IV, the helix is thought 
to be a commensurate 157 helix having the helices packed 
in a hexagonal array 2'5. The unit cell in these phases has 
usually been considered to contain one chain 5'6, which 
has the consequence that only a single handedness can 
be present. As pointed out by Farmer and Eby 7, this 
implies that every other chain must reverse its handedness 
in going from the low temperature phase to the high 
temperature phases; for this to be the case a mechanism 
must exist to allow for the reversal of the helicity at a 
low cost in energy. The reversal of handedness of the 
helical molecule was proposed early as a possible defect 
in the crystal phases 8. Both infrared absorption 9 and 
Raman scattering ~°'11 in the band 570-640 cm-1 show 
anomalies with increasing temperature which have been 
explained in terms of thermally activated helicity-reversal 
defects9-~ t. There is also evidence from nuclear magnetic 
resonance spectra 12 of growing dynamic disorder with 
increasing temperature. 

Conformational energy calculations 6'~3-15 show that 
there are two degenerate minima for conformations about 
+ 16 ° off the trans conformation, in close agreement with 
experiment. The potential barrier between these minima 
is less than 1 kcal mol- ~ t,  which suggests that it might 
be relatively easy to form a defect consisting of a reversal 
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i" 1 kcal ~4.2 kJ 

of the helicity. Some simple conformatlonal energy 
calculations of such a defect have been performed 9'16 
with the results that the conformational energy of a chain 
containing one such defect is also about 1 kcal mol-1 
higher than the energy of a perfect helix. 

The purpose of the present paper is to show that such 
a defect separating two regions of opposite helicities 
appears as a natural dynamic state in the PTFE chain. 
This entity has been given the name ambidextron 17. We 
have calculated the size and dispersion relation of the 
ambidextron, and we will argue that the creation of 
ambidextrons may play a significant role in the transition 
from the low temperature phase to the high temperature 
phases of PTFE. 

The existence of dynamic helicity-reversal defects in 
PTFE was first discussed qualitatively by Clark is, who 
speculated that such defects may provide a mechanism 
for large angular displacements about the chain axes at 
temperatures below 19°C without significantly changing 
the X-ray diffraction spectrum of PTFE. Discussion of 
propagating solitary-wave defects without helicity re- 
versal has a longer history19; most recently Syi and 
Mansfield 2° have proposed that such a mechanism can 
be used as a molecular model for ~-relaxation in 
numerous crystalline helical polymers. In the present 
paper we concentrate on the dynamics of helicity-reversal 
defects. We will find that a certain topological constraint 
limits the applicability of the model, but that the 
exceptional lamellar thickness 21 of PTFE makes the 
ambidextron a possible candidate for relaxation pro- 
cesses in this particular material. 

CALCULATION OF THE DYNAMICS OF 
THE AMBIDEXTRON 

We start by deriving an effective Hamiltonian for an 
isolated PTFE chain, with parameters determined by a 
combination of conformational energy calculations and 
data derived from observation of the vibrational spec- 
trum of PTFE. We denote by Om the rotation of the mth 
CF 2 unit about the helical axis relative to a fixed direction 
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Figure 1 Part of the phase diagram of PTFE 

in space, and make the assumption that the potential 
energy can be written 

U = ~  Vt(Om+,--Om)+~ V2(Om+,--0._,) (1) 
m rn 

For convenience we have replaced O~ by Om + ~ for all 
odd m, so that a conformation with all O= = 0  will 
represent the planar zigzag all-trans conformation. While 
the first term in equation (1) is minimized in this all-trans 
conformation, the second term represents the repulsion 
between the next-nearest fluorine groups. In the ground- 
state conformation, IOm+l- Om[ << 1, so we define ~/=- 
Ore+ ~ -O~ and proceed by expanding equation (1) in ~/~, 
and ~/~ + ~/m- t. Symmetry considerations require that the 
expansion have the form 

where 

and 

U ~  E 2 4. (O~lt] m + ~2t/m 71- • • .) 
m 

- 3' ~ [(r/, + r/,_ 0 2 + . . . ]  + constant 
m 

1 d2 Vl(x) 

~-2  ~ ~=o 

1 d4Vl(x) 
Gt2 - -  4! dx 4 ~=o 

1 d2 V2(x) 
Y=2  - d ~  . = o  > 0  

By rearranging equation (2), and defining 

1 
J1 = Oq 

1 
~ J 2  = 3 '  

and 

02 _ 43' - 0~ 2 

2~q 

(2) 

(3a) 

(3b) 

(3c) 

(4a) 

(4b) 

(4c) 

we obtain 

1 
U = ~ J1  ~m 1"(0"+ 1 - -  Ore)2 -- 02]2 

1 
"-I-~J2EE(Om+l--Orn)--(Orn--Orn_l)] 2 (5) 

To derive the equations of motion for vibrations of the 
monomers about their equilibrium positions, we denote 
by I the moment of inertia of a monomer unit about the 
helical axis, and write the Hamiltonian as 

[ dOm'~ 2 1 H=~I ~ kOt-) +2 Jt ~, I - (0.+,- -0m)2--0212 

I 
+ ~ J2 E I-(Om+t--O.)--(Om--Ora_l)] 2 (6) 

Ill 

We take 0 o to be the observed deviation from the trans 
conformation in the 157 helix, and then require that 
1 4. ~JtO0 = eb, where eb is the calculated potential barrier 
between the minima of these conformations. The param- 
eter J2 is calculated from the fluorine-fluorine inter- 
actions using the approach outlined in the Appendix. 
Finally, the moment of inertia I is determined by 
requiring that the small-amplitude librational vibrations 
about ~/= = 0o found from equation (6) have a frequency 
~0 o at the Brillouin zone centre corresponding to the 
observed frequency 22,23 of 6.1 THz. The values of 0o, 
eb, Jr, J2 and I and the calculated parameters of the 
ambidextron are presented in Table 1. 

To analyse the equations of motion resulting from the 
Hamiltonian, we use a continuum representation to write 
the Hamiltonian density as 

I F O O ( z ) 1 2  1 j  F a 2 ( O 0 ~  2 -]2 a 3 [020~2 
H=~L-~-  I +~ 1[ ~,~,/ -0o2J "[- 2 -  J2L~Z2 ) 

(7) 
where a is the separation of the monomer units along 
the chain axis, which we take to be in the z-direction. 
The continuum approximation is appropriate when 

a 2 020 
~ - ~ - z  2<<1 

We will further discuss the validity of this approximation 
later in this paper. 

The equation of motion obtained from equation (7) is 

1 020 2a3jla ~c~O F(O0~20q~ a3j2 t~40 
a at 2 -- ~ t ~ L \ ~ )  -~JJ -  ~z' (8) 

Table 1 Parameters for the Hamiltonian (eq. 6) and calculated 
parameters for the ambidextron 

Parameter Value 

0o 
8b 
a 
I 
J1 
J2 
80 
a* /a  
v* 
o) o 

0.21 rad 
0.25 kcal tool- 1 (ref. 15) 
2.21 ~, 
4.32 × 10 -46 kg m 2 
1.28 × 102 kcal tool- 1 

19.4 kcal mol-1 
1.04 kcal mol- 
1.56 
1.4 x 10 a m s - 1  

38.1 x 1012 rads -1 (refs. 22, 23) 
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We look for wave-like solutions with the ansatz 

O(z, t) = O(z ~ vt) (9) 

substitution of which in equation (8) gives 

'vZO,,=2a3j1 d { [ _o~l]~ do,,, a dz O' (0')2 a 2 j j - a S J 2  dzz (10) 

where O'=-dO(z)/dz. Integrating once, and defining 
qKz) =- O'(z), we finally arrive at the relation 

a3jzcp"= 2a3jlq93--(! v 2 + 2aO~J)q~ (11) 

Equation (11) is the familiar and well studied ¢p4 
equation 24. Two solutions of (11) are the trivial static 
solutions given by ¢p = + Oo/a, which represent right- and 
left-handed regular helices. A non-trivial solution of (11) 
is the ~04 kink: 

q~(z-T-vt)=q~+-tanhF(IvZ+L\  2a202jt']l/2/I (Z~Vt)+6] 

(12) 

where 

q~+- = +(  I v 2 -  +2a~2a20gJ1)l/zJ (13) 

and 6 is an unimportant phase. 
The solutions (12) represent a reversal of the helicity 

from the pitch given by +_ Oo/a at z ~ - ~ to -T- Oo/a at 
z ~ + ~ travelling with a velocity _ v. The ends of the 
chain at z ~ _+ ~ rotate in opposite directions with an 
angular velocity v(p +. The ambidextrons represented by 
(12) are localized within a distance 

a(v) = ( 2 a 4 J 2  "~i/2 [ l ( v ) 2 ]  
Iv z + 2aZOZdl, ] ~ a* 1 -- ~ ~ (14) 

for (v/v*)<< I, with 

and 

a ,=a(d2y /2  
0o \A/  (15) 

v* (4aZO~J1Y/2 
= \ ~  ~ ] (16) 

Their energies e are given by 

[ ] e~e o 1 4a20~jlJ+--a--2a 2 (17) 

with L the overall length of the chain and with 

eo = ~ 03(jld2) 1/2 (18) 

being the energy of a static ambidextron. 
From (17) and (18) we see that the ambidextron has 

an effective mass, m*, given by 

m* 102°[L = ( , q , , q _ , o ~  
= ~- La- \Jl,! A ~ a (19) 

This expression differs from those commonly encountered 
in soliton theory in containing a term proportional to 
the length L of the chain. The origin of this term lies in 
the topological constraint imposed on any solution for 
a continuously varying angle O(z, t); the 'winding num- 

ber', equal to the number of times 0 rotates about the 
axis in passing from one end of the chain to the other, 
cannot change if the ends of the chain are at rest. Keeping 
the ends of the chain fixed thus results in a force that 
tends to prevent free motion of the soliton. This problem 
is avoided if at least one end of the chain is free to rotate, 
but then the bulk of the chain must participate in the 
excitation of the soliton, and a correspondingly large 
term appears in the expression for the energy. The 
effective mass is then almost entirely due to the moment 
of inertia of the chain. 

The calculated values for Co, a* and v* are included 
in Table 1. First we see that the energy e o of the static 
ambidextron calculated in this indirect way agrees well 
with values obtained by other authors. Brown 9 finds a 
value of 1.2 kcal mol-1 from analysis of the infrared 
absorption peaks at 625cm -1 and 640cm -1 and 
compares this with an energy of 1.4-2.6 kcalmo1-1 
obtained from a conformational calculation, while Corra- 
dini and Guerra 16 arrive at a value of about 1.0 
kcal mol -  1. 

The solutions (12) represent ambidextron states where 
the two ends of the molecule rotate in opposite directions. 
Such a state is not very likely to occur in crystalline 
PTFE,  where the chains are folded in lamellae of 
thicknesses 25 of the order of 1 #m and no stem in the 
lamellae is then likely to have two ends both of which 
are free to rotate. However, on physical grounds there 
must exist solutions of (8) that satisfy a boundary 
condition in which only one end is kept fixed. Such 
solutions cannot be obtained by a Lorentz transforma- 
tion of (12), since to satisfy energy conservation such 
defects cannot travel with constant velocity. An ambi- 
dextron travelling from the free end towards the fixed 
end of the chain thus does so with a velocity that decreases 
with the distance travelled. Although we have not been 
able to obtain such a solution in closed form, we can 
estimate the time it takes for such a defect to traverse a 
typical lamella thickness of PTFE.  We consider an 
ambidextron created at t = 0 at a free end of a PTFE 
chain, so that this end rotates as the ambidextron travels 
along the chain. When losses are ignored, the energy E 
of this ambidextron is then approximately 

= eo + 12 m*v(t) 2 + L 
E 2a z(t)(q~ + )2v2 (20) 

Here m* is the effective mass associated with the local 
structure of the defect and this effective mass is a function 
only of the spring constants J1 and 32; z(t) is the distance 
that the ambidextron has travelled in a time t and the 
last term in (20) is the kinetic energy of the rotating 
section of the chain. From (20) we have 

v = [ E--co 11/2 (21) 

m* z(t)(~o + )~ 

from which we obtain 

I(~o÷)2L\-2--/ \ 4aa t/2/3 
(22) 

For an initial energy E of 2 kcal mol-1, we then obtain 
a traversal time of the order of 10 -s s. 
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D I S C U S S I O N  

For  the ambidextrons considered in this paper  to provide 
a mechanism for relaxation in the transition between 
phases I and IV, there must then be a high ratio of free 
ends to stems in a crystal lamella. The molecular weight 
of P T F E  is T M  typically about  10 6, while the stiffness of 
the P T F E  chains causes the lamellar thickness to have 
an exceptionally high value of about  21 1/~m. Thus each 
molecule in a lamella folds only a few times, which means 
that the ratio of free ends to stems is indeed high. 

This consideration raises the more general question of 
whether a continuum soliton model is capable of 
describing molecular motion in helical polymers in which 
the chains are more tightly folded. To treat the case of 
isotactic polypropylene, for example, it may be necessary 
to model the ambidextron in terms of a two-dimensional 
solitary wave (r(z, t), O(z, t)), in which not only the angle 
0 but also the amplitude r can change with position. An 
amplitude that passes through zero would then corre- 
spond physically to a backbone bond passing through 
the helix axis. This process would change the winding 
number  of the polymer chain, and hence allow the motion 
of the ambidextron without rotation of large segments 
of the chain. The energy barriers to be overcome in 
forming this type of excitation would appear  to be 
sufficiently large that a discrete rather than a continuum 
model would be necessary. 

In the particular case of PTFE,  the continuum 
approximation to the Hamil tonian appears to be justi- 
fied. As previously stated, this approximation is valid 
when 

a 2 d20 
~ - ~ z  2<<1 

For  the ambidextron,  we obtain 

a2 (]20 ,~01  

d z  ~ • 

which is in accord with this condition. Furthermore,  
Schmidt 26 has examined the continuum approximation 
of the discrete ~p4 chain, and finds the continuum 
approximation to be reasonably accurate for a/a*  < 0.6. 
In our case, we have a/a* ,~ 0.6. 

C O N C L U S I O N S  

We have shown that a dynamic helicity reversal, termed 
an ambidextron, appears as a natural consequence of the 
equation of motion for the monomers  in a P T F E  chain. 
The properties of the ambidextron are such that it will 
propagate  with position-dependent velocities in the range 
from 40 to 1000 m s-1 at a cost of energy of the order 
of 1 kcal m o l -  1. These ambidextrons are, however, such 
that one end of the chain in which they propagate  must 
be free to rotate. Hence, for the ambidextrons to provide 
a mechanism for relaxation in crystalline PTFE,  there 
must be a high ratio of free ends to stems in the crystal 
lamellae. This is indeed the case for PTFE,  because the 
stiffness of the molecular chains causes the fold length of 
P T F E  to be exceptionally long. Thus the ambidextrons 
provide a mechanism for the reversal of helicities which 
may occur in the transition from the low temperature 
phase to the high temperature phases of PTFE.  

In the present paper,  we have only considered a single 

chain of P T F E  and have ignored the effects of interchain 
interactions in the crystalline phases of PTFE.  Conforma- 
tional calculations 16 indicate that the interaction between 
a chain with one ambidextron and a perfect helical chain 
is about  the same as the interaction between two perfect 
helices, and so we have no reason to believe that the 
inclusion of interchain interactions will qualitatively 
change any results obtained here. However, because 
neighbouring chains of opposite helicities interlock more 
readily than chains of the same helicity, there exists the 
possibility of a weak long-range interchain interaction 
between ambidextrons; if one helix reverses its helicity, 
the neighbouring chains can lower the interchain inter- 
action energy somewhat by reversing their helicities to 
bring the ambidextrons into greater proximity. The 
properties of a lattice of chains, each described by the 
Hamiltonian equation (6) and interacting with one 
another, will be the subject of future work. 
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A P P E N D I X  

In this appendix, we estimate the coefficient ,/2 of equation 
(5). We denote by ev + e= the interaction energy between 
the fluorine atoms on carbon a tom m -  1 and those on 
carbon a tom m +  1. Here tv is the van der Waals 
interaction between a fluorine a tom at r l  and a fluorine 
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a tom at I' 2 . This energy is given by 

A B 
8v(rl - -  1"2) = + (A1) 

11.,-,2f o I, ,-1.2l  
where 15 A = 276.5 kcal mol  - '  A 6 and B = 2.332 x 105 
kcal too l -  1 AlE (1 A = 10-  t rim). The electrostatic con- 
tr ibution e¢ is given by 

q2 
e~(r 1 - r2) - (A2) 

In  equat ion (A2), q is the effective charge on each fluorine 
a tom ~5, q = -0 .173e ,  where e is the p ro ton  charge. 

It  is easy to show that  

d 2 
J2 = -d~-- ~ (e~ + ee)],=o (A3) 

where $ = 0r" + 1 - 0r.- 1" By using the values of  q, A and 
B given above, we conclude after some algebra that  
J2 = 19.35 kcal too l -  1. 
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